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1. Introduction

The heterotic string provides a natural setting for studying d = 4 Poincaré-invariant mod-

els of particle physics coupled to four-dimensional quantum gravity. A key feature of this

framework is that perturbative heterotic backgrounds can be described in the RNS for-

malism where the necessary and sufficient requirements to preserve N = 1 space-time

supersymmetry are well known: the internal world-sheet theory must be a unitary c = 9

(0, 2) superconformal modular-invariant theory with integral R-charges [1].

Recent results [2, 3], building on earlier work [4, 5] have shown that contrary to initial

expectations [6], large classes of appropriate (0, 2) SCFTs may obtained as low energy limits

of (0, 2) supersymmetric sigma models. In particular, (0, 2) deformations of many well-

understood CFTs with (2, 2) SUSY are unobstructed and correspond to additional massless
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fields in spacetime. The (2, 2) locus is distinguished merely by degree of computability, in

much the same way as a Gepner point is distinguished in the moduli space of the (2, 2)

SCFT corresponding to the quintic Calabi-Yau 3-fold.

In light of these developments we must ask to what extent the familiar properties

of (2, 2) theories, such as mirror symmetry, special geometry, and the computability of

Yukawa couplings continue to hold in generic (0, 2) models. This is not idle curiosity: the

presence of the (0, 2) deformations of (2, 2) theories indicates that even in such a familiar

example as the heterotic string compactified on the quintic, we only understand a slice of

the full moduli space!

Important progress has already been made on these issues. Already some time ago,

evidence for (0, 2) mirror symmetry appeared in [7]. Shortly thereafter, a number of dual

pairs were constructed using a (0, 2) analogue of the Greene-Plesser construction [8, 9].

The comparison of spectra in these mirror pairs utilized the techniques to compute elliptic

genera of (0, 2) Landau-Ginzburg theories developed in [10]. More recently, mirror descrip-

tions of (0, 2) gauged linear sigma models were proposed [11] using a generalization of [12].

The main object of study in these models is a truncated chiral ring that resembles the

more familiar chiral rings studied in (2, 2) theories [11, 13, 14]. This ring provides a (0, 2)

generalization of (2, 2) quantum cohomology [11, 15]. In order to check these results, Katz

et. al. [16, 17] have directly computed worldsheet instanton corrections to correlators in

the original (0, 2) linear sigma model. Significant progress has also been made in directly

computing instanton generated superpotentials in geometric (0, 2) compactifications [18 –

20].

There has also been substantial effort in developing a general theory of half-twisted

non-linear sigma models [21 – 24]. These theories are the natural (0, 2) generalizations of

the topological sigma models familiar from the study of (2, 2) theories. In worldsheet per-

turbation theory they make contact with the mathematical theory of chiral differential

operators and the definition of mirror symmetry in terms of mirror chiral de Rham com-

plexes. This approach may well lead to a general framework for the study of (0, 2) heterotic

compactifications and mirror symmetry off the (2, 2) locus.

The focus of this note is somewhat different. We observe that in a large class of

(2, 2) theories, namely those obtained as low energy limits of linear sigma models, many

correlation functions are readily computable by topological field theory techniques. To

what extent do these methods apply once the theory is deformed off the (2, 2) locus? If

they do extend in a straight-forward fashion, then we already have methods to compute

correlators in (0, 2) theories. With these computations in hand, we will be able to study the

dependence of the Yukawa couplings on the bundle moduli, the structure of the singular

locus in the CFT moduli space, the stringy resolution of the singularity, and the (0, 2)

mirror map.

We have studied the simplest class of such theories—(0, 2) deformations of gapped

(2, 2) SUSY Landau-Ginzburg (LG) theories, and we have found that we can easily com-

pute correlators of local chiral operators in the corresponding half-twisted theory. The

correlators are given by a weighted sum over the classical supersymmetric vacua and vary

smoothly across the (2, 2) locus.
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Given that our ultimate interest is in conformal models, it may seem strange to study

gapped theories. However, experience with (2, 2) theories suggests that the seemingly

strange is natural. For example, in Vafa’s solution of topological Landau-Ginzburg mod-

els [25], computations are effectively done by adding a relevant deformation to the su-

perpotential, performing the necessary computations, and then taking the deformation

parameters to zero. Another relevant example is the quantum restriction formula of Mor-

rison and Plesser [26], which relates certain correlators in the sigma model associated to

a Calabi-Yau hypersurface in a Fano toric variety to sums of correlators in the sigma

model for the ambient toric space. Finally, linear sigma model computations are often

directly translatable into LG computations, either by following a dualization procedure as

in [12, 11], or by directly working on the Coulomb branch of the linear model [27].

The rest of the paper is organized as follows. In section 2, we discuss (0, 2) deforma-

tions of (2, 2) linear sigma models. This will motivate the Landau-Ginzburg theories we

consider in section 3. We compute correlators in these theories in section 4 and apply the

general results with a couple of illustrative examples in section 5. Section 6 contains our

conclusions.

2. (0, 2) deformations of (2, 2) theories

In this section we review the standard construction of (0, 2) deformations of a (2, 2) lin-

ear sigma model [28] and make some simple observations about the form of (0, 2) mirror

symmetry.

2.1 Basic field content

The field content of the theory is easily presented in superspace.1 Parametrizing the (0, 2)

superspace by (x±, θ+, θ
+
), we can construct superspace derivatives D+,D+ and use these

to define irreducible representations of the right-moving supersymmetry. As the linear

model is a gauge theory, it is convenient to work in Wess-Zumino gauge in presenting these

multiplets. The superfields we need are as follows:

1. The chiral multiplets Φi, i = 1, . . . , N are bosonic multiplets that satisfy D+Φi = 0

and have expansion

Φi = φi +
√

2θ+ψi
+ − iθ+θ

+
D+φ

i.

2. The Fermi multiplets Γi are anticommuting multiplets satisfying

D+Γi =
√

2Ei(Φ) with superspace expansion

Γi = γi
− −

√
2θ+Gi − iθ+θ

+
D+γ

i
− −

√
2θ

+
Ei(Φ).

3. The vector multiplets Va, a = 1, . . . , N − d, have the superspace expansion

Va,+ = θ+θ
+
v+,

Va,− = v− − 2iθ+λa,− − 2iθ
+
λa,− + 2θ+θ

+
Da.

1The reader unfamiliar with (0, 2) superspace will find a concise presentation of the necessary details

in [28].
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The “matter” fields Φi and Γi are minimally coupled to the abelian vectors with charges

Qa
i , and the D+ above are covariant derivatives with respect to this connection. In general,

a (0, 2) theory need not have any natural pairing between the chiral and Fermi multiplets,

but theories with a (2, 2) locus do have this pairing. The action may then be written as

S = Skin + SF-I + SJ , with

Skin =

∫
d2yd2θ

{
− 1

8e20
ΥaΥa −

i

2
Φ

i
(∂− + iQa

i Va,−)Φi − 1

2
Γ

i
Γi

}
,

SF-I =
i

4

∫
d2ydθ+

(
ira +

θa

2π

)
Υa|θ+

=0
+ h.c.,

SJ = − 1√
2

∫
d2ydθ+ΓiJi(Φ)|

θ
+

=0
+ h.c.. (2.1)

Here Υa is the supersymmetric gauge-field strength, ra are Fayet-Iliopoulos parameters, θa

are the theta angles, and the Ji are polynomials in the Φi with charges −Qi
a. This theory

will have (0, 2) SUSY provided that the Ei and Ji satisfy the constraint
∑

iE
iJi = 0.

2.2 Linear model for the quintic

In order to construct the linear model for the quintic with (2, 2) SUSY, we will need six

charged pairs of chiral and Fermi multiplets, with charges Qi = (−5, 1, 1, 1, 1, 1) under a

single gauge group, as well as a neutral chiral multiplet Σ. We set

Ei = i
√

2QiΣΦi,

and take the Ji to be

Ji =
∂W

∂Φi
, where W = Φ0P5(Φ

1, . . . ,Φ5), (2.2)

and P5 is a generic homogeneous quintic polynomial. The superspace presentation makes

it clear that this action has (0, 2) supersymmetry. In fact, a number of carefully made

choices ensure that the action has the full (2, 2) supersymmetry expected from the heterotic

compactification on the quintic with standard embedding.

This massive theory is believed to flow to the desired superconformal theory in the

IR [28]. We will not repeat the many convincing arguments for this here. For our purposes,

it will be sufficient to illustrate that this might be so by considering the classical vacuum

structure of the theory. This may be determined from the scalar potential

U =
e20
2

(∑

i

Qi|φi|2 − r

)2

+
∑

i

|Ei|2 +
∑

i

|Ji|2. (2.3)

The classical vacuum structure is determined by solving for U = 0 modulo gauge equiva-

lence. When r is taken to be positive, the first term and the gauge quotient force the φi

to parametrize the total space of the bundle O(−5) → P
4. The second term requires the

neutral scalar σ to be zero, while the last sum further restricts φ0 to vanish, and the φi for

i = 1, . . . , 5 to parametrize the quintic hypersurface P5 = 0 in P
4.
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∗ θ+ Φ0 Φi Γ0 Γi Σ Υ

U(1)R 1 1 0 1 0 1 1

U(1)L 0 1 0 0 −1 −1 0

Table 1: R-symmetry charges of the (0, 2) multiplets in the GLSM.

The moduli space of the (2, 2) conformal field theory may be parametrized in terms of

UV data in a simple way: ir + θ/2π corresponds to the complexified Kähler class of the

quintic, while the complex coefficients in P5 modulo the action of GL(5,C) correspond to

the 101 complex structure moduli.2 Of course this is not the entire story since the theory

has a number of additional deformations that only preserve (0, 2) supersymmetry.

The action in eq. (2.1) will be supersymmetric for any Ei and Ji that satisfy
∑

iE
iJi =

0. When Ei and Ji are chosen as above, gauge invariance implies that the constraint is

satisfied, but this is not the only way to satisfy the constraint. In order for the conformal

theory to correspond to the desired string vacuum, the deformations should preserve the

right-moving R-symmetry, as well as a left-moving global symmetry U(1)L, which at the

(2, 2) locus becomes the left-moving R-symmetry.3 The charges of the fields under these

symmetries given in table 1.

It is an easy exercise to show that these symmetries fix the form of the Ei and J0, while

for i > 0 they constrain Ji = Φ0Gi, with Gi arbitrary quartic polynomials in Φ1, . . . ,Φ5.

The Gi depend on 350 additional parameters, but the constraint
∑

iE
iJi = 0, eliminates

126 of these, leaving 224 additional deformations that preserve (0, 2) supersymmetry. These

are the 224 deformations of the tangent bundle familiar from the textbook discussion of

the quintic [30]. One lesson that is immediate from the form of the Lagrangian is that

away from the (2, 2) locus all of the Ji deformations, whether complex structure or bundle,

ought to be treated on the same footing.

2.3 (0, 2) Mirror Symmetry: Lessons from the (2, 2) Locus

The (2, 2) locus of the quintic possesses the wonderful property of mirror symmetry. Al-

though mirror symmetry is a phenomenon associated to the equivalence of two conformal

theories, in most known examples dual pairs may be constructed in terms of dual pairs of

massive linear models [31]. For example, in the case of the quintic we can write down a

mirror linear model with 101 complexified Kähler parameters and a single complex struc-

ture modulus. The identification of the parameters between the theories is complicated by

the usual mirror map4 but up to this coordinate re-parametrization, we can easily identify

the mirror theories.

As we discussed in the introduction, there are good reasons to believe that there should

be a generalization of mirror symmetry off the (2, 2) locus. Assuming this generalization

2We hope the reader will forgive our usage of these geometric terms for the moduli of the abstract

conformal field theory. We should also point out that the linear model parametrizations of the Kähler and

complex moduli are not those of special geometry.
3A pedagogical discussion of this point may be found in [29].
4In the linear model this is generated by the point-like instantons in the gauge theory [28].
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exists, what may we learn about it from the form of the Lagrangian? The simplest guess

would be that given a (0, 2) CFT arising as the IR limit of a linear model, there ought

to exist a linear model that flows to the dual theory. Thus, a linear model specified by

the data τa, Ei, Ji, should have a dual specified by τ̂A, ÊI , ĴI .
5 On the (2, 2) locus we can

split the Ji deformations into those that preserve (2, 2) SUSY—J
(2,2)
i and those that only

preserve (0, 2) SUSY—J
(0,2)
i . The usual (2, 2) mirror symmetry suggests that on the (2, 2)

locus we can identify the complex structure parameters with the mirror Kähler parameters,

and vice versa:

τa ↔ Ĵ
(2,2)
I ,

J
(2,2)
i ↔ τ̂A, (2.4)

and at least infinitesimally, we would expect to identify the (0, 2) deformations as

J
(0,2)
i ↔ ÊI ,

Ei ↔ Ĵ
(0,2)
I . (2.5)

2.4 (0, 2) Mirror Symmetry for Fano Varieties

The full set of these deformations will be difficult to study all at once, and an important

simplification may be made by setting Ji = 0 and choosing the combinatoric data so

that the moduli space of the linear model is compact and toric. Although these theories

are gapped, their chiral ring contains holomorphic data generalizing the familiar Gromov-

Witten invariants to include bundle deformations.

On the (2, 2) locus it is known that there is a notion of mirror symmetry even for

these massive theories. The basic observation is that one may use a dual Landau-Ginzburg

description to compute the chiral ring of these theories. This description is easy to obtain

either by using a dualization procedure as in [12], or by doing computations on the Coulomb

branch of the linear model [27].

The work of [11] suggests that this dual description should also exist off the (2, 2) locus.

Based on that work, it appears that in this class of models the generalized mirror map

should relate the τ,E deformations of the GLSM to superpotential (i.e. Ji) deformations

of a dual LG model. To test this, it is important to learn to compute correlators in (0, 2)

Landau-Ginzburg theories. This is the issue to which we turn in the next section.

3. Half-twisted Landau-Ginzburg models

To construct the Landau-Ginzburg theories of interest, we can simply drop most of the

terms in the linear model Lagrangian. Dropping the gauge fields, we are left with a simple

5To be precise about this exchange, we would need to develop analogues of “toric” Kähler deformations

and “polynomial” complex structure/bundle deformations [32]. These are the deformations of the CFT

that may be easily identified with UV parameters of the linear model.
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∗ θ+ φ γ− ψ+

U(1)B +1 0 +1 −1

Table 2: Axial U(1) R-symmetry in the Landau-Ginzburg theory.

∗ φi φ
i

ψi
+ ψ

i

+ γi
− γi

−
1√
2
{Q+, ·} ψi

+ 0 0 −2∂z̄φ
i −J i 0

1√
2

{
Q+, ·

}
0 ψ

i

+ −2∂z̄φ
i 0 0 Ji

Table 3: The action of (0, 2) supercharges in LG model with Ei = 0.

action: S = Skin + SJ :

Skin =

∫
d2yd2θ

{
− i

2
Φ

i
∂−Φi − 1

2
Γ

i
Γi

}
,

SJ = − 1√
2

∫
d2ydθ+ΓiJi(Φ)|

θ
+

=0
+ h.c.. (3.1)

The component Lagrangian in Euclidean signature is given by

L = 4∂zφ
i∂z̄φ

i
+ 2ψ

i

+∂zψ
i
+ + 2γi

−∂z̄γ
i
− + JiJ i − Ji,jψ

j
+γ

i
− − J i,jγ

i
−ψ

j

+

+EiE
i − Ei

,jψ
j
+γ

i
− − E

i

,jγ
i
−ψ

j

+. (3.2)

We observe that an identical theory is obtained by switching γ− with γ−, and the Ji with

the Ei. The (2, 2) locus corresponds to Ei = 0 and Ji,j = Jj,i, in which case we may write

Ji = ∂W/∂Φi.

3.1 The half-twist

The (2, 2) theory possesses an axial R-symmetry U(1)B , with the action given in table 2.

This R-symmetry may be used to twist the (2, 2) theory to obtain the B-twisted topological

field theory. Not all (0, 2) deformations preserve U(1)B : while any Ji deformation is

allowed, the Ei must remain zero. Thus, the half-twisted theory will only be of use for

the study of the Ji deformations. Our discussion of the (0, 2) linear models and their LG

“mirrors” suggests that this restriction is quite natural, at least for the case of linear models

without superpotential, and we will now restrict attention to LG models with Ei = 0.

With this simplification, the action of the (0, 2) supercharges Q+, Q+ is as given in

table 3. We can now follow the standard procedure for constructing the twisted theory [33].

Let T be the Lorentz generator in the untwisted theory. The Lorentz generator in the

twisted theory is then taken to be T ′ = T − 1
2V . Its action on the fields and Q+ is given in

table 4. In particular, we see that 1√
2
Q+ becomes a world-sheet scalar fermionic operator,

– 7 –
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∗ φi φ
i
ψi

+ ψ
i

+ γi
− γi

− Q+

T 0 0 1
2

1
2 −1

2 −1
2 +1

2

V 0 0 −1 +1 +1 −1 +1

T ′ 0 0 +1 0 −1 0 0

Table 4: Lorentz symmetry before and after the twist.

which we will denote by Q. It will also be useful to rename the fermions:

ψ+ → ρz̄,

γ− → ηz,

ψ+ → θ,

γ− → χ. (3.3)

With this notation, the Lagrangian for the twisted theory takes the form

L = 4∂zφ
i∂z̄φ

i
+ 2ρi

z̄∂zθ
i + 2ηi

z∂z̄χ
i + JiJ i − Ji,jρ

j
z̄η

i
z − J i,jχ

iθj

= 2ηi
z∂z̄χ

i − Ji,jρ
j
z̄η

i
z +

{
Q,V

}
, (3.4)

where V = −2ρi
z̄∂zφ

i
+ χiJ i.

So far, we have formulated the theory on a flat world-sheet. It is not hard to re-write

the twisted action in the background of a fixed world-sheet metric g. We find that the

action takes the form

S =

∫

Σ

{
∗g

[
φ

i∇dφ
i + JiJ i − χiJ i,jθ

j
]

+ ρi ∧ ∗g∂̄θ
i

+ iηi ∧ ∂̄χi +
i

2
Ji,jη

i ∧ ρj

}
. (3.5)

The ∗g denotes the Hodge star map constructed with the metric g. The first line above is

Q-exact, so that we may write S = S′ +
{
Q,V

}
, with

S′ =

∫

Σ

{
iηi ∧ ∂̄χi +

i

2
Ji,jη

i ∧ ρj

}
,

V =

∫

Σ

{
−ρi ∧ ∗g ∂̄φ

i
+ ∗gχ

iJ i

}
. (3.6)

Having constructed the Lagrangian, we may now define the half-twisted theory by pro-

jecting onto the cohomology of Q. That is, we compute correlators of Q-closed operators.

These decouple from Q-exact terms, in the sense that

〈O1(x1) · · ·Ok(xk)
{
Q,W

}
〉 = 0 (3.7)

for all Q-closed Oi and all W . In what follows, we will be concerned with correlators of

Q-closed local operators. Inspection of the Q action shows that these are generated by

φi(z, z̄) modulo the relations Ji(φ) = 0.

– 8 –
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3.2 Twisting versus half-twisting

The half-twisted theory superficially resembles the familiar twisted topological theory ob-

tained from a (2, 2) Landau-Ginzburg theory. There, in addition to Q+, Q− also becomes

a world-sheet scalar under the U(1)B twist, and one may use Q = Q+ +Q− as the BRST

operator. In this case, the twisted action may be written as

S = Stop + {Q,V },

with Stop a term independent of the world-sheet metric. This result has two important

consequences. First, the energy-momentum tensor is Q-exact, and it follows that the corre-

lators of local Q-closed operators are independent of the positions of the insertions. Second,

we may use the metric independence of the twisted theory to simplify computations: on

the one hand, rescaling the world-sheet metric g → λg is a Q-trivial deformation of the

action, while on the other hand as λ→ ∞, the semi-classical expansion about the critical

points of the potential becomes an arbitrarily good approximation [25]. In the (2, 2) case,

this leads to a simple formula for correlators of local observables on a Riemann surface of

genus h:

〈φi1(x1) · · · φik(xk)〉h =
∑

φ∗

φi1
∗ · · ·φik∗ [detHessW ]h−1 , (3.8)

where φ∗ denotes a critical point of the superpotential.

Do these results survive off the (2, 2) locus? Examination of the (0, 2) action suggests

a negative answer, since S′ depends on the complex structure chosen on the world-sheet. A

choice of complex structure is equivalent to the choice of projectors on the space of 1-forms

on the Riemann surface: π : Ω1 → Ω(1,0) and π̃ : Ω1 → Ω(0,1). Combining ρ and η into a

single fermionic 1-form κ = ηzdz + ρz̄dz̄, we have

S′ =

∫

Σ

{
iπκi ∧ π̃dχi +

i

2
Ji,jπκ

i ∧ π̃κj

}
. (3.9)

Thus variations of the complex structure modify the action. A closely related problem is

that the energy-momentum tensor is no longer exact, and seemingly we can no longer argue

that the correlators are position-independent. Instead, by following the (2, 2) argument,

we will find that the correlators are only constrained to depend holomorphically on the

positions of the insertions; see, for example [21].

Fortunately, there is one feature that the twisted and half-twisted theories do have in

common: a constant rescaling of the world-sheet metric modifies the action by BRST-trivial

terms. Thus, even in the (0, 2) case, we may compute the correlators exactly by working in

the limit of an arbitrarily large Riemann surface. In this limit fluctuations about the vacua

are suppressed, and we expect the semi-classical expansion to become exact. Furthermore,

in gapped (0, 2) theories it is clear that in this limit correlators become independent of

positions of the inserted operators.6 Since this rescaling of the metric is Q-exact, we

conclude that the correlators of local Q-closed operators will be position-independent and

are computed exactly by the semi-classical expansion about the vacua.

6We expect this to be true in the conformal case as well but this calls for a more careful analysis.
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The spirit of this discussion should be familiar from the work on generalizing the

structure of the chiral rings to (0, 2) theories [11, 14]. These authors faced similar is-

sues in discussing gapped non-linear sigma models, and they relied on Q-triviality of con-

stant rescalings to argue for the existence of the ring structures off the (2, 2) locus. It is

not surprising that we should be able to use similar arguments in the simpler setting of

Landau-Ginzburg theories. Indeed, here the arguments are more transparent because all

the problems and their resolutions are already visible at tree-level, while in the non-linear

models one has to carefully consider the one-loop beta function and the corresponding fact

that quantum-mechanically Tzz̄ fails to be Q-exact.

Our basic conclusion is that, at least as far as genus zero correlators of local opera-

tors are concerned, the half-twisted gapped Landau-Ginzburg theory is not sensitive as to

whether it is on or off the (2, 2) locus. The dependence on the world-sheet complex struc-

ture is an interesting feature of the theory on higher genus Riemann surfaces. It is not clear

to us whether it will show up in correlators of local observables, or will only be sensitive to

insertions of non-local operators. Since to discuss higher genus amplitudes we would need

to couple the theory to world-sheet gravity, we will not discuss this depdendence further.

In what follows, we will restrict attention to genus zero correlators.

The form of the correlators on the (2, 2) locus (eq. (3.8)) leads to an obvious guess for

the form of the correlators in these LG models:

〈φi1(x1) · · · φik(xk)〉 =
∑

φ∗

φi1
∗ · · · φik∗

[
det
i,j
Ji,j

]−1

, (3.10)

where the sum is over the classical vacua, Ji(φ∗) = 0. In the next section we will derive

this expression by a simple semi-classical expansion.

4. The semi-classical expansion

4.1 The free theory

We begin by solving the free theory on the sphere. We take Ji = mijφ
j . The action is

quadratic in the fields, so we should have no trouble computing all the correlation functions.

The computation carried out here is entirely straightforward, and as expected, we will find

that a non-zero answer is entirely due to the zero modes. The non-zero modes cancel out

as a consequence of supersymmetry. We emphasize that this is to be expected, but we

nevertheless present the computation because it is the simplest hands-on example, and it

certainly guides our intuition for these sorts of (0, 2) determinants.

It will be convenient to deal separately with the bosons and fermions, so we will split

the action accordingly: S = Sb + Sf :

Sb =

∫

Σ
φ

i [
∆dδ

ij + m̄kimkj

]
φj ,

Sf =

∫

Σ
ρi ∧ ∗g ∂̄θ

i + iηi ∧ ∂̄χi +
i

2
mijη

i ∧ ρj − ∗gm̄ijχ
iθj. (4.1)
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We will solve the theory by a mode expansion in terms of the eigenfunctions of the

Laplacian on the sphere:

∆dfα = λ2
αfα,

∫

Σ
fα ∧ ∗gfβ = δαβ. (4.2)

Since the Riemann surface is Kähler, it follows that ||∂fα||2 = λ2
α/2. We may use these

eigenfunctions to expand all the fields. To keep notation simple we will drop the flavor

indices. We write the expansion as

φ = φ0/
√

Volg +
∑

α

φαfα,

θ = θ0/
√

Volg +
∑

α

θαfα,

χ = χ0/
√

Volg +
∑

α

χαfα,

η =
∑

α

2

λα

ηα∂fα,

ρ =
∑

α

2

λα

ρα∂̄fα. (4.3)

The only change in this expansion for genus greater than zero would be the introduction

of η and ρ zero modes. It is these that may yield a dependence on the world-sheet complex

structure.

The action splits into a sum over the modes: S = S0 +
∑

α S
α, so that we can perform

the integration mode by mode. Let us first treat the zero modes. The action is

S0
b = φ

i

0 m̄kimkj φ
j
0,

S0
f = −χi

0m̄ijθ
j
0. (4.4)

Unlike a generic (0, 2) theory, the models with a (2, 2) locus possess a canonical choice

for the path integral measure, and with this choice we have

D[fields0] =
∏

i

d2φi
0

π
dχi

0dθ
i
0 (4.5)

for the zero modes. This leads to

D[fields0]e
−S0

=
1

detm†m
detm† = (detm)−1. (4.6)

The non-zero modes are not much harder. We can write the action as

Sα
b = = φ

i

α

[
λ2

αδij +
(
m†m

)
ij

]
φj

α,

Sα
f = ρi

αλαδijθ
j
α − χi

αλαδijη
j
α − ρi

α

(
tm
)
ij
ηj

α − χi
αm̄ijθ

j
α. (4.7)

It is convenient to re-write the fermion action by combining ρi
α, χ

i
α into a row vector Ψα,

and ηi
α, θ

i
α into a column vector Ψα. In terms of these variables, the fermion action takes

the form

Sα
f = −Ψ

I
αA

α
IJΨJ

α, (4.8)
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with A given by

Aα =

(
−λα1 tm

m̄ +λα1) . (4.9)

The measure for the non-zero modes is again canonical:

D[fieldsα] =

∫ ∏

i

d2φi
α

π
dηi

αdρ
i
αdθ

i
αdχ

i
α. (4.10)

The bosonic integral yields det
[
λ2

α +m†m
]−1

, and the fermionic integration gives

det(−Aα), which is easily verified to be the inverse of the bosonic contribution. So, indeed,

as expected, the non-zero mode contributions cancel model by mode. Thus, it is easy to

see that, at least in the free theory, regularization is not an issue.

Finally, we can write down the correlators in this trivial example. The only non-trivial

observable is the identity, and we conclude that

〈1〉 = (detm)−1 . (4.11)

4.2 Correlators via localization

Having disposed of the free field case, we are ready to tackle the more interesting theory

with arbitrary Ji. Because we are projecting onto the Q cohomology, we expect that we

should be able to do all computations by a semi-classical computation about Q-invariant

field configurations. These are also the configurations that dominate the path integral when

we scale up the metric on the Riemann surface. Examining the Q variations, we conclude

that the field configurations are φ = φ∗ satisfying ∂̄φi
∗ = 0 and Ji(φ∗) = 0. In the case of a

gapped theory, the latter in fact requires φ∗ to be constant on the world-sheet, so that the

Q-invariant configurations consist of a finite number of points — the simultaneous zeroes

of Ji = 0. Thus, the correlators are given by

〈φi1(x1) · · · φik(xk)〉 =
∑

φ∗

〈φi1(x1) · · · φik(xk)〉free|mij=Ji,j(φ∗), (4.12)

with φi = φi
∗ + φ′i, where φ′i are the bosonic fields in the free theory. Using our solution

of the free field correlators, we find the expression advertised in eq. (3.10).

4.3 Properties of the correlators

We will now use the general expression to derive some properties satisfied by the correlators.

First, since the correlator is obtained by summing over the zeroes of Ji = 0, it is clear that

our correlators obey the “quantum cohomology relations”

〈OJi〉 = 0 for all O . (4.13)

Second, it is easy to derive selection rules that lead to constraints on the correlators.

Consider a global U(1) symmetry of the free theory, where the Φi multiplets have charges

qi, and the Γi have charges −Qi. Suppose the Ji depend on parameters tA. We can always
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∗ φi φ
i

ρi ηi θi χi
− tA Ji

U(1) qi −qi qi −Qi −qi Qi QA Qi

Table 5: Charge assignments for selection rules.

assign these parameters charges QA such that Ji has charge Qi. Having done so, it is easy

to see that the U(1) action given in table 5 is a symmetry of the action. When Qi 6= qi,

this is an anomalous symmetry, but of course it may still be used to derive selection rules.

The transformation of the measure is easy to see in the twisted variables, where it is just

due to the zero-mode mismatch. Under a field redefinition ρi → eiαqiρi, ηi → e−iQiαηi and

so on, we find that the measure shifts by D[fields] → D[fields]∆, where

∆(α) =
N∏

i=1

eiα(qi−Qi). (4.14)

This leads to the selection rule

〈φi1 · · ·φik〉(eiαQAtA) = ∆(α) exp (iα [qi1 + · · · + qik ]} 〈φi1 · · ·φik〉(t). (4.15)

As usual in supersymmetric theories, these rules are quite powerful once they are combined

with constraints from holomorphy.

Finally, we note that just as in the case of the (2, 2) correlators, the (0, 2) correlators

may be expressed by a residue formula:

〈φi1 · · ·φik〉 =
1

(2πi)N

∫

C

dφ1 ∧ dφ2 ∧ · · · ∧ dφN

J1J2 · · · JN
φi1 · · · φik , (4.16)

where C is a multicontour for the set of common zeroes of the Ji [25, 34].

5. Examples

5.1 The (2, 2) example

The simplest (2,2) LG theory that has a (0, 2) deformation is given by a massive deformation

of the product of Ak and Ap N = 2 minimal models. On the (2, 2) locus, we have the

superpotential

W =
1

k + 1
Xk+1 − tX +

1

p+ 1
Y p+1 − sY. (5.1)

In (0, 2) language, we have

JX = Xk − t

JY = Y p − s. (5.2)

This simple theory has a discrete R-symmetry Zk×Zp, under which X has charges (1/k, 0)

and Y has charges (0, 1/p). Recalling the Jacobian for the measure, we see that this
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symmetry implies that the 〈XAY B〉 vanish unless A = k − 1 mod k and B = p − 1

mod p. The quantum cohomology relations reduce the non-vanishing correlators to

〈Xmk+k−1Y np+p−1〉 = tmsn〈Xk−1Y p−1〉. (5.3)

Finally, using our formula, we see that

〈Xk−1Y p−1〉 =
∑

(X∗,Y∗)

Xk−1
∗ Y p−1

∗
kpXk−1

∗ Y p−1
∗

= 1. (5.4)

5.2 A (0, 2) deformation

The simple theory we just solved has plenty of (0, 2) deformations. As a concrete example,

let us pick

JX = Xk − t− αY,

JY = Y p − s. (5.5)

The (2, 2) locus is given by α = 0. The quantum cohomology relations yield the constraints

〈XAY B〉 = t〈XA−kY B〉 + α〈XA−kY B+1〉,
〈XAY B〉 = s〈XAY B−p〉. (5.6)

Thus, the undetermined correlators have A < k and B < p. Furthermore, the theory still

has a Zk symmetry under which X has charge 1/k and Y is neutral. Applying the same

considerations as above, we see that we just need to consider the correlators with A = k−1.

The quickest way to proceed is again to just use the explicit form for the correlators:

〈Xk−1Y B〉 =
∑

(X∗,Y∗)

Xk−1
∗ Y B

∗
kpXk−1

∗ Y p−1
∗

=
1

p

∑

Y∗

Y B−p+1. (5.7)

Thus, the non-vanishing correlators have B = np+p−1, and 〈Xk−1Y p−1〉 = 1. Using this,

it is easy to see that there are new non-vanishing correlators when α 6= 0. For example, we

find

〈Xmk+k−1Y p−1−m〉 = αm. (5.8)

We can use this example to illustrate a simple trick often useful in these computations.

This is essentially a specialization of the more general residue results mentioned above. To

compute 〈XAY B〉 we need to sum over the simultaneous zeroes of JX and JY . We can

solve for Xk in terms of Y , and then be left with a sum over the roots of Y p = s. Using

the the familiar relation

∑

z∗|P (z∗)=0

f(z∗) =

∮

C

dz

2πi
f(z)

P ′(z)
P (z)

, (5.9)

where C encloses the roots of the polynomial P (z), we are left with an elegant formula for

the correlators:

〈Xmk+k−1Y B〉 =

∮

C

dz

2πi

(t+ αz)mzB

zp − s
, (5.10)
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where C is a contour given by |z| = |s| + ǫ for some positive ǫ. In this case, it is a simple

matter to pull the contour around to encircle z = ∞, where the residue is easy to evaluate,

leading to the non-zero correlators being given by

〈Xmk+k−1Y K+p−1−m〉 = αm

(
t

α

)K 1

K!

dK

duK

(1 + u)m

1 − sαpup

tp

∣∣∣∣
u=0

. (5.11)

More generally, this kind of approach makes it clear that there is never any need to evaluate

specific roots — a good thing, as this would make the problem quite nasty. In fact, all of

our computations may be performed algebraically.

5.3 The (0, 2) mirror of P
1 × P

1

A generalization of the Hori-Vafa dualization procedure for (0, 2) models was proposed

in [11]. The starting point for the most interesting example in [11] is the (2, 2) GLSM for

P
1×P

1. We will now describe the linear model, the dual Landau-Ginzburg theory proposed

in [11], and we will then compute correlators in the dual theory.

The field content of this theory is easy to get by adapting the action for the quintic

given above. To get a P
1 model, we need two chiral fields Φi and their Fermi multiplets

Γi, i = 1, 2 that are minimally coupled with charge 1 to a gauge field V with field-strength

Υ. To be on the (2, 2) locus, we also need to introduce a neutral chiral field Σ. Gauge

invariance forbids non-zero Ji, and (2, 2) SUSY requires Ei = i
√

2ΣΦi. The theory depends

on a single complexified F-I parameter τ corresponding to the complexified Kähler class of

the P
1.

To get the theory considered in [11], we introduce a second P
1, with field content Φ̃i, Γ̃i,

Ṽ , Υ̃, Σ̃, and another F-I parameter τ̃ . This P
1 × P

1 theory has (0, 2) deformations that

are visible in the linear model. Following [11], we consider

E1 = i
√

2
{
Φ1Σ + Σ̃(α1Φ

1 + α2Φ
2)
}
,

E2 = i
√

2
{
Φ2Σ + Σ̃(α′

1Φ
1 + α′

2Φ
2)
}
,

Ẽ1 = i
√

2
{
Φ̃1Σ̃ + Σ(β1Φ̃

1 + β2Φ̃
2)
}
,

Ẽ2 = i
√

2
{
Φ̃2Σ̃ + Σ(β′1Φ̃

1 + β′2Φ̃
2)
}
. (5.12)

Not all of these deformation parameters are independent: sending (α,α′) → (λα, λα′) and

(β, β′) → (µβ, µβ′) corresponds to trivial deformations for any non-zero µ,λ. Thus, there

are a total of six independent (0, 2) deformations.

Dualizing this model leads to a (0, 2) Landau-Ginzburg theory with two chiral super-

fields X,Y and

JX = X +
P1

X
+ q1Y +

S1

Y
,

JY = Y +
P2

Y
+ q2X +

S2

X
, (5.13)
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where q1, q2 are some functions of α, β, and

P1 = −(1 + p1(α, β))e2πiτ , S1 = −s1(α, β)e2πieτ ,

P2 = −(1 + p2(α, β))e2πieτ , S2 = −s2(α, β)e2πiτ .
(5.14)

The (2, 2) locus corresponds to pi = si = qi = 0.

Like the Landau-Ginzburg theories we have been discussing, the (0, 2) linear model

admits a half-twist, and one expects that in a massive model of the sort just described,

one should still be able to compute correlators of half-chiral observables. In this case, it

would amount to computing correlators of the form 〈σaσ̃b〉, where the (σ, σ̃) are the lowest

components of the (Σ, Σ̃) multiplets. Recently, Guffin and Katz [17] computed a number

of correlators in this half-twisted linear model, expanding upon earlier work of Katz and

Sharpe [16]. By studying the moduli space of instantons of degrees 0, 1, 2, Guffin and Katz

were able to compute a number of correlators for a generic (0, 2) deformation of the theory.

This required an impressive array of algebraic techniques and substantial computational

effort, and it yielded a quite elegant form for a number of correlators.

Our simple observations on the (0, 2) Landau-Ginzburg correlators now allow us to

compare the results of Adams et. al. with those of Guffin and Katz. By computing the

correlators explicitly, we will be able to make a quantitative test of generalized (0, 2) mirror

symmetry. At this time the story is still incomplete and, as has been discussed in [17], the

real issue is the form of the mirror map. In fact, there are, in principle, three separate

issues:

• What is the precise form of the (p, q, s) as functions of (α, β, α′, β′)?

• Is there a parameter-dependence in the relation between insertions of σ, σ̃ and inser-

tions of X,Y ? We know this is not the case on the (2, 2) locus, but it is possible (and

likely) that this is modified for a generic (0, 2) deformation.

• The dualization produces an additional factor in the measure of the theory. On the

(2, 2) locus, this amounts to replacing detJ with XY detJ . Is this measure factor

modified off the (0, 2) locus?

We will not address these issues in this paper. Instead, we will content ourselves with

a solution of the model of [11], and leave the applications of this solution to upcoming

work [35].

With this modest goal in mind, we return to the JX , JY of eq. (5.13). Elementary

counting of solutions reveals that generically, the zeroes consist of four points in (C∗)2.
Although at first the equations look a little formidable, a simple trick renders them quite

simple. We can “integrate in” a field Z with JZ = Z −XY without changing the chiral

ring. Working in this theory, and first solving for (X,Y ), we find that the vacua satisfy

P (Z) = (1 − q1q2)Z
2 + (S1 + S2 − q1P2 − P1q2)Z + S1S2 − P1P2 = 0,

X = −q1Z + P1

Z + S1
Y, Y 2 = −Z(Z + S1)

q1Z + P1
. (5.15)
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The correlators are now given by the sum

〈XAY B〉 =
∑

Z∗,Y∗

XA
∗ Y

B
∗ detJ−1 [X∗Y∗]

−1 , (5.16)

where the last factor comes about from the change in measure proposed by [12].

With this form, a simple Maple routine readily yields correlators. For instance, we

find

〈XX〉 =
s1 − q1 − q1p2

(1 + p2 − s1q2)(1 − q1q2)
,

〈XY 〉 =
1

1 − q1q2
,

〈Y Y 〉 =
s2 − q2 − q2p1

(1 + p1 − s2q1)(1 − q1q2)
.

(5.17)

Two of the three correlators vanish on the (2, 2) locus, but sufficiently far away they

reveal interesting singularity structure. A naive comparison between these correlators and

the results of Guffin and Katz suggest that the singularity at q1q2 = 1 corresponds to a

singularity in the linear model correlators, while the singularities at s1q2 − p2 = 1 and

s2q1 − p1 = 1 may be due to singular terms in the map from the σ, σ̃ to the dual variables

X,Y . Further work is necessary to determine whether this is indeed correct, and we hope

to report on these issues soon.

5.4 A conformal example

As our final example, we will show that it is also possible to apply our results to correlators

in conformal theories. As a simple example of this, consider the Landau-Ginzburg theory

with superpotential

W =
1

3
(X3

1 +X3
2 +X3

3 ) − yX1X2X3. (5.18)

This theory flows to a CFT. A Z3 orbifold of this CFT with action

(X1,X2,X3) → (ζX1, ζX2, ζX3),

with ζ3 = 1, corresponds to the CFT on T 2 constructed as the hypersurface W = 0 in P
2.

The easiest way to see this is to construct the torus in a linear model and then consider the

Landau-Ginzburg phase. We will compute the unique three-point function in the untwisted

sector: C(y) = 〈X1X2X3〉. We expect to find a singularity in the correlator at y3 = 1.7

To compute this correlator, we will follow the most straight-forward route: we will

deform the superpotential with a relevant deformation, compute the correlators, and then

take the deformation parameter to zero. A simple deformation that does the job is to take:

W =
1

3
(X3

1 +X3
2 +X3

3 ) − yX1X2X3 − t2(X1 +X2 +X3). (5.19)

7This is of course a little misleading. This singularity does not correspond to a real singularity in the

torus SCFT. It is the avatar of the large complex structure limit, and the seeming singularity may be

removed by a proper renormalization of the operators.
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This superpotential has eight critical points arranged in orbits of the Z3 ⊂ S3 that permutes

the Xi:
(Y, Y, Y ),

(Z,Z,−(1 + y)Z),

(Z,−(1 + y)Z,Z),

(−(1 + y)Z,Z,Z),

(5.20)

where Y 2 = t2/(1 − y) and Z2 = t2/(1 + y + y2). The Hessian is given by

H = X1X2X3

[
8(1 − y3) − 2y2t2

X1 +X2 +X3

X1X2X3

]
. (5.21)

There are two ways in which these critical points may degenerate: when y3 = 1, we

see that all the points run off to infinity, while when y = −2, the critical points collapse to

(± 1√
3
,± 1√

3
,± 1√

3
). While we expect the singularity from y3 = 1 to survive the t→ 0 limit,

we had better find that troubles at y = −2 are illusory. This is indeed the case:

C(y) =
X1X2X3

H

∣∣∣∣
Y

+
X1X2X3

H

∣∣∣∣
Z

(5.22)

=
2

2(1 − y)(y + 2)2
+

6(1 + y)

2(1 − y3)(y + 2)2
=

1

1 − y3
.

Now let us consider (0, 2) deformations of this example. We take

J1 = X2
1 − y1X2X3 − t2,

J2 = X2
2 − y2X3X1 − t2,

J3 = X2
3 − y3X1X2 − t2. (5.23)

We note that these deformations cannot be undone by a field-redefinition. The (2, 2)

locus is y1 = y2 = y3. To compute C(y1, y2, y3) we can use standard elimination theory to

algebraically solve forX2 andX3 in terms ofX1, leaving us with an eighth-order polynomial

for X1. Alternatively, we may use constraints from the (2, 2) locus, permutation symmetry,

and simple selection rules to constrain the correlator. Either way, we find a simple answer:

C(y1, y2, y3) =
1

1 − y1y2y3
. (5.24)

As in the massive example, we see that the correlator reveals additional singularity structure

of the LG theory off the (2, 2) locus.

6. Conclusions

We have computed correlators of chiral observables in (0, 2) deformations of (2, 2) Landau-

Ginzburg theories and have found a simple result: the correlators are given by a weighted

sum over the supersymmetric vacua. In other words, in these theories the (2, 2) locus is not

distinguished even by computability. We have presented several concrete examples illustrat-

ing the general result, as well as a few simple techniques useful in explicit computations.
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This simple result means that in a large class of (0, 2) theories, important RG-invariants

may be computed by simple algebraic techniques. The computation of correlators in con-

formal LG models follows in an obvious fashion, and we suspect that when generalized

to the gauged linear sigma model, our results may well lead to a (0, 2) version of the

Morrison-Plesser quantum restriction formula. More immediately, having explicit expres-

sions for correlators in these theories will help to determine the (0, 2) mirror map needed

to reconcile the results of Guffin and Katz [17] and those of [11]. Finally, we expect very

similar formulae to exist for (0, 2) theories that do not possess a (2, 2) locus. These include

phenomenologically interesting cases; for example, the Landau-Ginzburg phase of the (0, 2)

quintic with a rank 4 bundle.
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